JOURNAL OF COMPUTATIONAL PHYSICS 110, 23-38 {1994)

A Grid Generation and Flow Solution Method for the
Euler Equations on Unstructured Grids

W, KYLE ANDERSON

NASA Langley Research Center, Hampton, Virginia 23681

Received March 2, 1992; revised May 27, 1993

A grid generation and flow solution algorithm for the Euler equations
on unstructured grids is presented. The grid generation scheme utilizes
Delaunay triangulation and self -generates the field points for the mesh
based on cell aspect ratios and allows for clustering near solid surfaces.
The flow sotution method is an implicit algorithm in which the linear set
of equations arising at each time step is solved using a Gauss Seidel
procedure which is completely vectorizable. In addition, a study is
conducted to examine the number of subiterations required for good
convergence of the overall algorithm. Grid generation results are shown
in two dimensions for a NACA 0012 airfoil as well as a two-element
canfiguration. Flow solution resulis are shown for two-dimensional
flow over the NACA 0012 airfoil and for a two-element configuration in
which the solution has been obtained through an adaptation procedure
and compared to an exact solution. Preliminary three-dimensional
results are also shown in which subsonic flow over a business jet is
computed. € 1994 Academic Press, Inc.

INTRODUCTION

The use of unstructured grids for the solution of the Euler
equations offers several advantages over the use of struc-
tured grids. These advantages include the ease with which
adaptive methodology can be incorporated into the flow
solvers and the relatively short time to generate grids about
complex configurations. Although the overall time to
generate grids about complex configurations is much shor-
ter for unstructured grids compared to block-structured
grids, the computer time required for the unstructured flow
solvers has historically been much longer than those of
structured grids. While unstructured flow solvers will con-
tinue to require longer computer times than structured grids
due to indirect addressing, recent advances [1-4] now
make three-dimensional computations on unstructured
grids much more competitive with those of structured grids.

As mentioned earlier, the success of unstructured grids is
due in large part to the relative ease at which grids can be
obtained over complex configurations. There are currently
two dominant methods of generating unstructured grids.
The first of these is the advancing front method in which the
cells which make up the interior of the mesh are computed

by marching away from the boundaries of the domain
[3, 6]. This method has been used with success to generate
grids about many complex configurations [7]. Further
details of this method can be found in Refs. [5-8] and the
references contained therein.

The other method commonly used for generation of
unstructured grids, and which is emphasized in the current
study, is that of Delaunay triangulation [9, 107. This
technique triangulates a given set of points in a unique way
such that the minimum angle of each triangle in the mesh
is maximized. This has the advantage that the resulting
meshes are optimal for the given point distribution in that
they do not usually contain many extremely skewed cells.

The field points for generating grids using the Delaunay
triangulation approach are usually generated a priori by
generating points about individual components with struc-
tured grids [11], a quadtree method [8], or by embedding
the geometry into a Cartesian grid [12]. A novel approach
to the generation of fieid points is given by Holmes [13] in
which the field points are generated as the triangulation
proceeds based on the aspect ratio and cell area of current
triangles. This technique generates grids with little skewness
since new points are introduced to continually reduce the
cell aspect ratios. Unfortunately, grids generated in this
manner tend to be too coarse to be used for obtaining
accurate flowfield solutions without adaptation.

In the present study, an approach similar to that of
Holmes is used and an extension is incorporated which
automatically adds new nodes to cluster points in regions of
interest. Using the new generator, grids around complex,
multi-body configurations are efficiently generated which
are suitabie for computations.

Many advances have also been made in flow solvers
for obtaining flowfield solutions on unstructured grids.
Impressive results have been obtained by Mavriplis in
Ref. [2] in which solutions are obtained for a wing con-
figuration using a node-based, central differencing scheme
with multigrid to achieve rapid convergence. In this
reference, solutions on a three-dimensional grid consisting
of over two miilion cells are obtained in about one hour.

0021-9991/94 §6.00

Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.

24 W. KYLE ANDERSON

For upwind solvers, Frink [1] has genecrated results
for many steady statc applications using a cell-centered,
multistage time-stepping scheme and Roe’s approximate
Riemann solver [14]. For unsteady applications, Batina
[15] has developed both explicit and implicit algorithms
for obtaining aeroelastic applications while Rausch [16]
has coupled some of these methods with adaptive mesh
refinement.

In the current study, an implicit algorithm is described for
solving the Euler equations. This method is based on the
backward Euler time differencing scheme as is the work in
Refs. [15,17], but it is formulated in a manner which
permits full vectorization. In addition, the number of
subiterations necessary to sufficiently solve the linear
problem and to obtain the best convergence rate is examined.
Results are shown for both two- and three-dimensional
calculations.

TWO-DIMENSIONAL GRID GENERATION

Delaunay Trianguiation

The foundation of the proposed grid generation proce-
dure is the Delaunay triangulation procedure described in
detail in Ref. [9]. This technique triangulates a set of points
by inserting each point one at a time into a current tri-
angulation so that no vertex from one triangle will lie within
the circumcircle of any other triangle. This is accomplished
by first identifying all the cells whose circumcircie encloses
the point which is to be inserted. An example is shown in
Fig. 1 in which the point to be inserted lies within the cir-
cumcircle of two triangles. The Delaunay cavity, shown in
Fig. 2, is then formed from the union of all the triangles
identified above. At this stage, a new triangulation is made

FIG. 1. Ideatifying cells broken by introducing a new point.

FIG. 2. Delaunay cavity.

by simply connecting the new point to each of the nodes
lying on the boundary of the Delaunay cavity as depicted in
Fig. 3.

For generating grids about arbitrary two-dimensional
configurations, an initial triangulation is first formed which
simply consists of a square divided into two triangles and
whose four corner points are located at sufficient distance
from all solid surfaces. The points which define the solid
surfaces are then inserted followed by a predetermined num-
ber of far field points which are located in a circular pattern
a specified radius from the center of the bodies, The cells
which make up the interior of the body are then identified
according to whether the center of each cell is located inside
or outside of one of the bodies.

F1G. 3. Reconnection of grid after inserting a new point.

A GRID GENERATION AND FLOW SOLUTION METHOD 25

FIG. 4. Initial sample grid around NACA 0012.

After this initial phase of the process, a loop is conducted
over all of the cells and a new point is immediately intro-
duced at the center of the circumecircie of any triangle whose
aspect ratio (defined as the ratio of the circumcircle radius
to twice the incircle radius) exceeds a predetermined
tolerance which is generally about 1.5, Surface integrity is
maintained by rejecting any point that would result in
breaking of the cells which make up the interior of the airfoil
[107. Note that when a cell aspect ratio is larger than the

FIG.

5. Sample grid around NACA 0012 afier inserting one point.

FIG. 6. Sample grid around NACA 0012 after inserting two points.

tolerance, the new point is immediatetely added into the
existing triangulation, This prevents duplicate points from
being added due to two triangles whose points define the
same circumcircle.

Also note that immediately adding points in this manner
eliminates searching which is otherwise necessary in order
to identify the first triangle which is broken by the addition
of the current point. This is because the cell that has been
identified as having an aspect ratio greater than the

FIG. 7. Sample grid around NACA 0012 after inserting three points.

26 W. KYLE ANDERSON

FIG. 8. Sample grid around NACA 0012 after inserting four points.

tolerance will also correspond to one of the triangles that
form the Delaunay cavity. Since no searching is reguired,
the computer time required to generate the field points in
this manner is very smail. The addition of new points in this
manner is similar in concept to that of Ref. [13] in which
new points ar¢ introduced based on both cell area and
aspect ratio.

An example of this process is shown in Figs. 4 thru ¢ for
a sample grid around a NACA 0012 airfoil, The airfoil sur-

y}gh" 17
.Qesa.t.%mzﬁ?év

)
SRR

FIG. 9. Fipal sample grid around NACA 0012 with all aspect ratios
<15

face is defined with 200 points along the surface and 32
points placed around the outer boundary. Note that the
outer boundary is placed reasonably close 10 the airfoil for
illustrative purposes, allowing the entire grid to be seen.
Figure 4 shows the initial triangulation in which only the
surface points and the outer boundary points have been
included and has cells with aspect ratios as high as 160.

New points are now introduced at the center of the cir-
cumcircle of any cell whose aspect ratio exceeds 1.5. Figures
5, 6, 7, and 8 show a few of the intermed:ate triangulations
after inserting the first, second, third, and fourth peints,
respectively.

The final grid obtained by adding fieid points in this man-
ner 1s shown in Fig. 9. It consists of 1328 nodes, 3748 faces,
2420 cells and has a maximum aspect ratio of 1.495.
Although all the resulting cells are close to equilateral, it is
apparent that the grids generated with this technique are
relatively coarse a short distance from the airfoil and should
not be expected to be sufficient for accurate computations.
It is therefore necessary to increase the grid density in the
vicinity of the airfoil.

Extensions for Clustering Mesh Points

In order to add new points in the vicinity of the airfoil, a
value is first assigned to each existing cell which is the
product of the cell area and a weighting function which
decreases as the distance from the cell center to a solid
surface is increased, i.e.,

$(A, d)= A x fld). (1)

In this equation, d is the distance from the cell center to the
nearest node lying on a solid boundary. This variable will be
used to add subsequent points in cells in which the deviation
of ¢ from the average is larger than the standard deviation.
For this reason, the average and standard deviation of this
variable are first computed:

S B
-5 L ¢ 2)
o= [X (G-4)%N. 3)

A list of new points that will be inserted into the existing
grid is then constructed from the cell centers of all triangles
whose local vaiue of ¢(4,) exceeds that of the average plus
the standard deviation, i.c., whenever ¢, = ¢ + o. The list of
new points is then introduced into the existing triangulation
as before. By adding new points in this manner, the function
¢ tends to be evenly distributed over the grid and new points
are added at larger cells near the body first, and few (if any)
new points are introduced far from solid surfaces.

A GRID GENERATION AND FLOW SOLUTION METHOD 27

The weighting function used in the current study is given
by

1
f(d)=1—_;m- (4)

In this equation, d, is a distance measured from the surface
inside of which clustering will tend to occur. A plot of this
function is shown in Fig. 10 for several values of § and
dy=0.5. As seen, the transition of this function at d=0.5
steepens as f increases and the value decrcases as the
distance from the airfoil increases. In this manner, the
transition between clustered and non-clustered regions can
be made smoothly and the distance away from the airfoil
in which clustering occurs is also controlled. It should be
noted that since this procedure only adds one point at the
center of each triangle, the amount of clustering for the final
grid (i.e., how many new points are introduced) is increased
by repeating the above procedure several times. In practice,
it has been determined that three or four repetitions in
which f§ is gradually increased leads to grids with good
clustering near the surface of the airfoils and a reasonably
smooth transition region between the clustered and non-
clustered areas is obtained. Further enhancements to the
above procedure may be achieved by varying the weighting
function. _

The final step in the grid generation procedure is to
smooth the grid with simple Laplacian-type smoothing as
given in Ref [18]. This is achieved by repositioning the
mesh points according to

w n
x','“ =x7+— Z {xe—x)
L

(5)
w n
ARES i Y (e v
k=1

—— Beta=5
Heto=10
Beta=20

FIG. 10. Weighting function for several values of § and d,=0.5.

0 ;-::s;?a 0K
I

i
S

OO

N
E)
iy

ok

T
L,

Fe

G St ?;;" mi%’%‘f-\i’:‘?ﬁ e 4
PR @{.w&gh@&ﬁ (%
%%%@" Q‘m‘g}i‘“ ‘

vl

KRS
<[

FIG. 11

Final sample grid around NACA 0012,

where ¢ 1s a relaxation factor and the sum is over all edges
meeting at node i. For the current study, a relaxation factor
of 0.2 is typically used and 100-200 iterations of smoothing
are performed.

The final sample grid for the NACA 0012 airfoil is shown
in Fig. 11, This grid demonstrates the success of the
clustering procedure and is a clear improvement to the
grid previously shown in Fig. 9.

EULER SOLYER

The Euler flow solver is an implicit, cell-centered,
upwind-differencing code in which the fluxes on cell faces
are obtained using the Van Leer flux-vector-splitting [19].
The solution at each time step is updated using an implicit
algorithm which uses the linearized backward-Euler, time-
differencing scheme. At cach time step, the linear system of
equations is salved with a subiterative procedure in which
the cells in the mesh are divided into groups (colors) so that
no two cells in a given group share a common edge. For
each subiteration, the solution is obtained by solving for all
the unknowns in a given color before proceeding to the next
color. Since the solution of the unknowns in each group
depends on those from previous groups, a Gauss—Seidel
type of procedure is obtained which is completely vec-
torizable.

The choice of a cell-centered scheme over a node-based
scheme for the Euler equations is based on two observa-
tions. First, since the number of unknowns on a given mesh

28 W. KYLE ANDERSON

is greater for the cell-centered scheme, the accuracy
obtained will be increased over that of a node-based scheme.
This is due to the fact that the increased number of
unknowns in the mesh results in a decreased spacing
between unknowns and hence lower truncation error. The
increase in accuracy is obtained at a slightly greater expense
and, whether or not the accuracy gained offsets the extra
work required, depends on many factors such as the details
of the implementation and the type of computer used.
Second, since the scheme used for updating the solution
involves an iterative procedure at each time step to obtain
an approximate solution to a linear system of equations, it
is beneficial to efficiency on a vector computer that the num-
ber of off-diagonal terms for cach cell is constant, However,
it should be noted that the suitability of a cell centered
scheme for Navier-Stokes computations is not clear due to
uncertainties in approgimating second-order terms on
highly stretched meshes. For example, it has been shown by
several authors [20, 217 that in two dimensions using a
node-based scheme, approximating a Laplacian using
Galerkin formulas will satisfy a discrete maximum principle
provided that the mesh is a Delaunay triangulation,
However, there is apparently no similar analysis for
cell-centered schemes.

Governing Equations

The governing equations are the time-dependent Euier
equations, which express the conservation of mass,
momentum, and energy for an inviscid gas. The equations
are given by

8Q 1 - .
-a—[~+-ji§ﬂF-ndQ—0, (6)

where the state vector Q and the flux vectors F are given as

I/
u
Q- ’;U ()
E
pU
.. Uu+d,p
F' ___F-: p x
" pUv+a,p ®)
(E4+ U

where U is the velocity in the direction of the outward
pointing unit normal to a cell face

9)

U=#A.u+h,m

The equations are closed with the eguation of state for a
perfect gas

p=(—1)E~p(’+v7)/2]. (10)

Flux-Vector and Residual Calculation

For the computations shown in this report, the flux vec-
tors in Eq. (8) are upwind differenced using the flux-vector-
spliting technique of van Leer [19]. These flux vectors are
given in terms of the Mach number normal to the cell face
defined as M, = U/a. For supersonic flow in the direction of
a face normal, (M, > 1},

Fr=(F-a)*=F, F-=F-a)-=0 (11)
whereas for supersonic flow in the opposite direction of the
face normal (M, < —1),

F-=(F-a)-=F, F+=(F a*=0 (12)
For subsonic flow {|M,] < 1), the fluxes are split into two
contributions, F * and F = such that the Jacobian matri)i of
F'* has positive eigenvalues and the Jacobian matrix of F~

has negative eigenvalues. The spiit fluxes are given by

t
mass

S ot 1A= UL 2a)y] +u}

Ftr=(F-a)*=) (13)
(frﬁass{[ny(¥Ui2a)/v]+u}
ei;1ergy3
where
tus= Tpa(M, L 1)/4 {14}
and
e A=y U+2(y—1)Ua+24> (u*+v%) '
energy mass (_}'2_ 1) 2
(15)
The steady state residual, given by
R=—§S F.hdo (16)
Q2

is calculated using trapezoidal integration by summing the
fluxes over each of the faces that make up the control
volume. For example, the residual in a triangular cell is
calculated as

R=—§ Fado= _Y FHQO+E-Q N L. (7)

i=1

A GRID GENERATION AND FLOW SOLUTION METHOD 29

Here, F£(Q 7} represents the split fluxes on the cell faces
formed from an upwind interpelation of the data to each
face, For first-order accurate differencing, the data on the
face is obtained from the data in the center of the cells on
each side of the cell face. For higher-order differencing, the
primative variables are extrapolated to cell faces using a
Taylor series expansion about the center of the cell so that
the data on the face is given by

Qace =qcemer+vq 'f’ (18}
where T is the vector extending from the center of the cell to
the center of the cell face.

For evaluating the gradient, Vq, the data is first inter-
polated to the nodes using inverse distance weighting and
the gradient is then evaluated using Greens theorem. This
method is that of Frink and is discussed in further detail in
Ref. [227. It should be noted that obtaining the data at the
nodes has also been accomplished using a linear least
squares fit of the data in the surrounding cells with no
apparent differences observed in the solutions obtained with
either method.

Boundary Conditions

Since the current scheme is a cell-centered scheme, infor-
mation from the interior of the mesh must be utilized along
with physical constraints in order to evaluate the fluxes on
the boundaries. The flow variables on the body are set
according to characteristic type boundary conditions
similar to those in Ref [237]. The density, pressure, and
velocity components on the body are set according to

(19)

pbody = pref + prel'arcf(ﬁxu + n_vv)

pbody:pref+(pbody_pre.f)/azsf (20)
ubody=uref—ﬁx(ﬁxu+ﬁyv)ref (21)
bbody = U — ﬁy(ﬁxu + ﬁy U)r:f (22)

from which the energy is set using the equation of state
given in Eq. (10). The reference conditions for Eqs. (19) thru
(22} are taken from the first cell in the interior of the grid.
Other procedures have been used such as setting the flux on
the surface using only the pressure on the body which has
been set to be identical to that in the adjoining cell with little
difference observed in the resuits.

Since an implicit scheme is used in the current study,
implicit bounary conditions are implemented by assuming
that

APrody = AProt (23)
A(ptt)poay = APt)t — A (A Alpu) + A, Alpr))rer (24)
A(pU)poay = B(pD) e — A, (A Alpu) + 1, Alpv) i (25)

AE gy =AE . (26)

In this manner, the entries in the matrix which correspond
to cells lying adjacent to a solid surface can be easily
modified to include the influence of the boundary.

For the far field, explicit boundary conditions are used in
which the velocity and speed of sound are obtained from
two locally one-dimensional Riemann invariants given by

R*=U 2a
-_'y*l.

(27)

These invariants are considered counstant along charac-
teristics defined normal to the outer boundary. For subsonic
conditions at the boundary, R~ can be evaluated locally
from free-stream conditions outside the computational
domain and R is evaluated locally from the interior of the
domain. The local normal velocity and speed of sound on
the boundary are calculated using the Riemann invariants
as

Uhoundary = %(R * + R -)

'—‘———I(R*uR’).

(28)

(29)

aboundary

The Cartesian velocities are determined on the outer
boundary by decomposing the normal and tangential
velocity vectors into components yielding

Upoundary = Hrer + ﬁr(Ubuundary - Urcf) (30)

Pboundary = Yrer + ”y(Uboundary - Uref)a

where the subscript “ref” represents values obtained from
one point outside the domain for inflow and from one point
inside the domain for outflow.

The entropy is determined using the value from either
outside or inside the domain, depending on whether the
boundary is an mllow or outflow boundary. Once the
entropy is known, the density on the far field boundary is
caiculated from the entropy and the speed of sound as

(31)

2 Ly — 1}
abourldary) v

pboundary = (
ySboundary

The energy is then calculated from the equation of state.

Time Advancement Scheme

IMrLICIT ALGORITHMS. The starting point for the time
advancement algorithm is the linearized backward-Euler
time differencing scheme which yields a system of linear
equations for the solution at each step given by

[A]"{4Q}"={R}", (32)

30 W. KYLE ANDERSON

where
(33)

The solution of Eq. (32) can, in principle, be obtained by
a direct inversion of {A]” and has the advantage that if the
exact linearization of R" is used in forming [A]”, the result-
ing scheme becomes Newton iteration in the limit as the
time step approaches infinity. Although this technique is
quite successful in two dimensions [24], the solution at
each time step requires a great deal of memory to store the
components of [A]" as well as extensive computer time to
petform the matrix inversions. Therefore, this approach is
currently not very feasible for practical calculations in three
dimensions.

Since the number of operations required to invert a
matrix depends on the bandwidth of the matrix, first-order
accurate approximations on the ieft-hand side of Eq. (32)
are often utilized in order to reduce both the required
storage as well as the computer time. With this simplifica-
tion, consistency between the left- and right-hand sides of
Eq. (32} requires that first-order approximations also be
used on the right-hand side in order to achieve quadratic
convergence. However, with first-order approximations on
the left-hand (implicit) side and second-order on the
right-hand side, this scheme remains stable for large time
steps. Therefore, first-order differencing of the left-hand side
with higher-order differencing on the right-hand side is
considered in the present study. It should be pointed out
that the use of a first-order scheme on the left-hand side is
primarily useful for steady-state computations.

A sample configuration of triangles in which the celis are
randomly ordered is shown in Fig. 12. The corresponding
form of the matrix [A]” is shown in Fig. 13, where a circle
represents the non-zero entries.

Although the solution of the system of equations may be
obtained through a direct inversion of [A]", as previously
mentioned, the need for large memory can be circumvented
through the use of a variety of relaxation schemes in which
the solution of Eq. (32) is obtained through a sequence of
iterates in which an approximation of 4Q is continually
refined.

To facilitate the derivation of these schemes, [A]" is first
written as a linear combination of three matrices represent-
ing the diagonal, subdiagonal, and superdiagonal terms, i.e.,

[A)"=[D]"+ [M]"+ [N]". (34)
9 | 4 3
2 8 10
5 1 6
1|12 7

FIG. 12. Sample cell configuration.

1)

00

FIG. 13. Form of matrix for cells in Fig. 12.

The simplest iterative scheme for obtaining 2 solution to
the linear system of equations is a Jacobi-type method
in which all the off-diagonal terms of [A]" {4Q}, (ie

[M]" {AQ} + [N]" {4Q}). are taken to the right-hand
side of Eq. (32) and are evaluated using the values of {4 Q}f
from the previous subiteration level /. This scheme can be
represented as

[D]" {4Q}"* ! =[{R}"—[M+N]"{4Q}']

=[{R}"-[0]" {4Q}']. (35)

The disadvantage of the above scheme is that the
sequence of Jacobi iterations may converge somewhat
slowly. In order to accelerate the convergence, a
Gauss-Seidel procedure may be employed in which values
of {4Q} are used on the right-hand side of Eq. (35) as soon
as they are available. An example of this scheme can be
written as

[D]{AQ}H—I — [{R}n_ [M]n {AQ}H-I

—[NI"{4Q}", (36)
where the latest values of {4Q} from the subdiagonal terms
are immediately used on the right-hand side of the iteration
equation. A slight modification to the above algorithm in
which the latest values of {4Q} from the superdiagonal are
used results in a very similar scheme which is given by

[(D}{4Q} " '=[{R}"—[M]" {4Q}"

—[NJ" {4Q}+']). (37)
Yet another variation of this algorithm can be obtained by
alternating the use of Eq. (36) with Eq. (37), such that a
symmetric Gauss—Seidel type procedure is obtained.

A GRID GENERATION AND FLOW SOLUTION METHOD 31

Note that the algorithms given above by Egs. (36) and
(37) can both be implemented by sweeping sequentially
through each mesh cell and simply using the latest values of
{4Q} for all the off-diagonal terms which have been taken
to the right-hand side. This can be represented as

i+1

[D}4Q}*'=[{R}"~ [0 {4Q} ¢),
where Q@ B is the most recent value of Q and will be at sub-
iteration level i + 1 for the cells which have been previously
updated and will be at level i for the celis which remain to
be updated. The distinction between algorithm (36) and
(37} comes about by sweeping forward through the cells
(Eq. (36)) or backward through the cells {Eq. (37)).

There are two disadvantages of the scheme as described
above. The first disadvantage is that since the solution of
each point must be obtained before proceeding to the next
one, this process is not vectorizable. The second disadvan-
tage of this scheme is that although the off-diagonal terms
may be updated and immediately used on the right-hand
side, the solution of the next unknown may or may not
depend on previously determined quantities. For example,
as can be seen from Fig. 12, when solving for unknown
number two using Eq.(36), the updated value of the
solution at point one is not used, so the solution for point
two remains a Jacobi step.

Note that for structured grids in which the cells are
ordered in a natural manner (e.g., left to right and top to
bottom), the latest information will be used immediately
for calculation of the next unknown. This is because the
ordering of the cells produces a banded matrix with
terms grouped along the diagonal. The fact that the
latest obtained data is not necessarily used for updating
information in unstructured grids is strictly due to the
random ordering of the cells.

Therefore, an improvement to the scheme described
above can be obtained by simply renumbering the cells in
such a way as to group terms along the diagonal of the
matrix. In this manner, the solution of each point will tend
to ensure that previcusly updated information from the sur-
rounding cells is used as soon as it is available. An example
of this is shown in Fig, 14, where the same sample set of cells
used in Fig. 12 is simply renumbered from bottom to top
and left to right. The resulting form of the matrix, shown in
Fig. 15 shows that the grouping along the diagonal is
greatly improved. [t is expected that the ordering of the cells

(38)

4 8 12

1 5 9

FIG. 14. Sample cells.

581/110{1-3

FIG. 15. Form of matrix for cells in Fig. 14.

in this way should result in somewhat faster convergence of
the linear problem than a random ordering of cells. Note
that although the ordering of the cells in this example
groups unknowns along the diagonal, other procedures
such as the Cuthill-McKee method described in Ref. [25]
are more effective for general configurations. Again, it
should be noted that several variations of this scheme can be
obtained by using various combinations of Eqs. {(36) and
{37). An important disadvantage of this scheme, however, is
that it stiil suffers from the fact that the contribution of the
off-diagonal terms on the right-hand side of Eq. (38) is not
vectorizable.

The Jacobi, Gauss—Seidel, and symmetric Gauss—Seidel
schemes described above have all been used in practice by
various researchers. An example is given in Ref. [17] where
these schemes have been used to solve the Euler equations
for transonic flow over a circular arc in a channel. In this
reference, it is determined that the symmetric Gauss—Seidel
scheme exhibited the fastest convergence rate of these three
schemes. In Ref. [267 successful use of a symmetric
Gauss—Seidel algorithm for transenic flow over airfoils is
described in which grouping the unknowns along the
diagonal is enhanced by sorting them according to the x
coordinate direction.

VECTORIZATION OF GAUSS-SEEL. The numbering of
cells used in the current study is that shown in Fig. 16. The
ordering is obtained by grouping cells so that no two cells
in a given group share a common edge. The resulting matrix

9 4 5
1 10 12

FIG. 16. Sample cells.

32

O O

OO

| o0 O

OO0
0O

O
O

O

O
O

O

-

FIG. 17. Fommn of matrix for cells in Fig. 16.

form for [A7 is given in Fig. 17. Note that {or the current
example, only two groups are formed; in practice, at most
four groups will be lormed for two-dimensional calculations
and five groups are formed for three-dimensional calcula-
tions. The first group for the present example consists of the
cells numbered ! thru 6 and the second group contains cells
7 through 12.

The solution scheme can be written as before using
Eqg. (38) and is implemented by solving for all the unknowns
in a group at a time. In this manner, the cells in the first
group are solved using a Jacobi-type iteration while the cells
in all the subsequent groups are obtained by using the most
recently updated vaiues of {AQ} from the off-diagonal
contributions. In this way, a Gauss-Seidel type scheme
is obtained which is easily implemented and is fully
vectorizable. Note that a symmetric Gauss-Seide! type of
procedure is not necessary and is not used; stability is
achieved as long as the matrix [A] maintains block diagonal
dominance which occurs when first-order differencing is
used on the implicit side of the equation [27]).

For coloring the cells in the mesh, a simple algorithm has
been used that consists of simply proceeding through a list
of cells that remain to be colored and checking to see if one
of its neighboring cells has already been placed in the
current color. If none of the neighbors is in the current
color, the cell is “tagged” and placed in the current color.
Otherwise, the cell is placed in a list of uncolored cells and
the process continues with the next cell in the hist of
uncolored celis. The resulting coloring is in no way optimal
but is reasonably efficient, requiring only a few passes
through the grid.

Note that in the discussions above, the exact number of
subiterations required in order to sufficiently converge the
lincar problem (Eq.{32)) has not been specified. The
number of subiterations used for each global time step has
been determined through numerical experiments which wiil
be presented in the results.

W. KYLE ANDERSON

Time Step Calculation

In order to enhance the convergence to steady state, local
time stepping is used. The time step calculation for each cell
1s given by

i

Jiti+a

where / is & length scale for the cell defined as the area of the
cell divided by the perimeter.

At=CFL (39)

Results

Flow field caleulations for several demonstration cases
are presented below. The first case is that of an NACA 0012
at a freestream Mach number of 0.8 and an angle of attack
of 125° The grid has an oufer boundary placed
approximately 50 chord lengths away from the body and
consists of 3624 nodes, 7012 cells, and 10,636 faces. A near
field view of the grid is shown in Fig, 18.

The pressure coefficient distribution along the surface of
the airfoil is shown in Fig. 19, As seen, a moderately strong
shock is captured on the upper surface of the airfoil and a
weaker shock is captured on the lower surface. Also, note
that since a flux-limiter has not been used for the present
calculation, an “overshoot” is evident ahead of the upper
surface shock. The corresponding Mach number contours
for this case are shown in Fig. 20.

For this calculation, the residual of the continuity equa-
tion has been reduced to machine zero in about 400 global
iterations as seen in Fig. 21, The CFL number was started
at 50 and linearly ramped to 200 over 100 iterations. The
CFL numbers used for the current calculation are not
necessarily optimal for the present case bul have been found
to give reasonably good convergence for a wide range of
test problems and grid densities. The memory required
corresponds to about 180 words per cell. For each global
iteration, 20 subiterations have been used to solve the linear
system each time resulting in a computational rate of
approximately 45 us per cell per global time step on a
CRAY YMP using a single processor. This computational
rate, however, depends on the number of subiterations
performed. For the current study, this number is based on
results of a numerical study in which the number of sub-
iterations has been varied for a wide variety of CFL num-
bers. A typicai plot of computer time required to obtain a
four-order-of-magnitude reduction in the residual is shown
in Fig. 22. This plot clearly indicates that 15-20 subitera-
tions for each global iteration produce the fastest con-
vergence rate. A similar study has been conducted on other
grids and other cases with similar results. For this reason,
between 15 to 20 subiterations are used for all cases shown
in this report. While this number of subiterations has

A GRID GENERATION AND FLOW SOLUTION METHOD

| AYAYAYAy
VAN v

VVA)‘ < <R KD S
Qvﬁaéfﬁ%n%mm%?;fﬁgn%

5

N
s IRV AY v NAVAY O

‘4% ’ﬁgﬁ% %ﬁv Y, Ak :uVAA ;35%3 ss’
[“?"’\9‘? R AT
JAVAE X5 ey
VAV e S SRy
KA AL RN S N DA
U s
DT AN AN NSRS
VAvay v iy, Qv TR AYAVav AV
- S WA AVAAYY
NN AR AN R
NV ATAVAVAN S QAN
A

~~

FIG. 18, Near field view of grid around NACA 0012.

1.2
25 .50 73 1.00

33

xX/C
FIG. 20. Mach number contours for NACA 0012, M_=038;

FIG. 19. Pressure distribution for NACA 0012, M =038; 2= 125" a=125°

34 W. KYLE ANDERSON

=
0
4]
i8]
%
_41—
o
o
|
-8
-12 1 i L L l —
[y 200 400 60Q 800
iterations

FIG. 21. Convergence history for NACA 0012, Mf =0.8; «=1.25°.

proven adequate for the current work, further work in
optimizing this parameter may prove beneficial.

A comparison of convergence rates obtained with both
implicit and explicit boundary conditions on the surface of
the airfoil is shown in Fig 23. As seen, the use of implicit
boundary conditions produces a slightly better rate of
convergence through the first several orders of magnitude
reduction in the residual, In addition, the use of explicit
boundary conditions seems to impede the convergence past
about seven orders of magnitude. This behavior has been
observed for a variety of other cases which are not presented.
It is worth mentioning, however, that the use of explicit

00
90—
0
o
fas
Q 80F
Q
)
4
70
60‘> L N R R T SN S |
0 10 20 30 40
subitergtions
FI1G. 22. Computer time for four-order reduction in residual; NACA

0012, M., =08; a=125°.

Implicit Boundary
Explicit Boundary

Log Res

o] 200

400
iterctions

800 800D

FIG. 23. Comparison of computer time for implicit and explicit
houndary conditions; NACA 0N 2, M =08; a= 125°

boundary conditions seems to lead to a more robust code in
that ramping of the CFL number has not been necessary
when explicit boundary conditions have been used. Note
that for most of the calculations in this study, implicit
boundary conditions have been used after five iterations and
the CFL is ramped from 50 to 200,

The next case presented is that of a two-element airfoil in
which an exact incompressible solution exists [287. The
initial grid used for this calculaticn is shown in Fig. 24 and
consists of 1556 points, 2882 cells, and 4439 faces. Both the
main element and flap each have 100 points along the sur-
face. Note that for this calculation, no clustering of cells has
been performed near the surfaces. This is because the final
solution is obtained through an adaptation procedure
described in Ref. [29]. The pressure distribution calculated
at a freestream Mach number of 0.2 vsing this initial grid is
shown in Fig. 25. As seen, the coarse grid yields results
which are in poor agreement with the exact solution.

As previously mentioned, a solution has also been
obtained by adapting the grid to the solution. Adaptation is
achieved by first identifying a list of cells requiring refine-
ment. New points, which are located at the center of each of
these cells, are then introduced into the existing triangula-
tion and the solution is interpolated to the new grid for use
in restarting the solution. Since the present flowfield does
not contain discontinuities, the list of new cells is identified
by flagging all cells in which the undivided velocity gradient
exceeds that of the average plus the standard deviation of all
the ceils in the grid [29, 30].

The fina! grid, shown in Fig. 26, counsists of 3165 nodes,
6332 cells, and 9190 faces with 148 nodes on the surface of

A GRID GENERATION AND FLOW SOLUTION METHOD

N/
V4
4%
I
Favg
v
&5
oK)
S
VA
VAV
'§
</
>

O avsos OVAVY

A Pk
‘. Vol 4@3}%:73?5:#3 SRR RT
T
» VLY,

(AW “\-‘4 ’Av

£x ALK ¥

‘AWSQF e : . VAN

AN AR R T COC)

Vb"ﬂnsnmrw 455"’4"5hy%:élg‘%wﬂisj‘éggﬁﬁﬁ;a
_ \V,

SO

<
VAN
N/NDPES
VAN i
Wava
5
o
5
‘4

FIG. 4. Grid around two-glement configuration.

+ Calculotions

in Ref. [28].

11,582 triangles, i1s shown in Fig. 28,

35

the main element and 128 nodes on the flap. The pressure
Exact Solution Main distribution obtained on this grid is shown in Fig. 27. As
Exact Selution Flap seen, the agreement with the exact solution is much
improved over that in Fig, 25, In addition, the calculated lift
of 2.026 compares well with the exact value of 2.0281 given

The present algorithm has also been implemented in
three-dimensions with preliminary results shown below.
The case shown is that of a business jet at a freestream Mach
number of 0.2 and an angle of attack of 3°, The grid used for
the computations has been generated using the advancing
front-type of grid generation as described in Ref. [31] and
consists of 27,191 nodes, 144,100 cells, and 294,109 faces.
The surface grid for this computation, which consists of

2 . 1 , 1 | I | This case has been run at a constant CFL number of 300

-.25 .19 62 1.06) 1.50
X,/C

with 15 subiterations with the convergence history for this
case shown in Fig. 29. As seen, the residual is reduced

FIG. 25, Pressure distribution over two-clement configuration using ~ Detween two and three orders of magnitude in 100 global

initial grid.

iterations, at which point the convergence slows somewhat.

KN
ST AVAN

N7 ‘
]
Ky
AV
= AV
5 VD< g
2
=]
K)o .M
K] 5
Ay S
% WAYAYY =
% g
AN
3
i =
53] = H
= ; £
£ B o _&B
= ; 27 -
E 55 |
z £33
© 283 §E
i O Lt 1 |
= #
SR ATAY,]
GRS ﬁ e
EMWA ,
e

2l
-.25

36

FIG. 28. Surface grid for business jet.

FIG. 27. Solution obtained for two-element airfoil after adaptation.

A GRID GENERATION AND FLOW SOLUTION METHOD 37

200 300 400
Ier otions

FIG. 29. Convergence history for Lear jet, M ,=0.2; a = 3.0°.

After 200 iterations, reduction in the residual of siightly
greater than three orders of magnitude is obtained. This
“tailing off” behavior has not been observed in two dimen-
sions when implicit boundary conditions are used, but it
may be due to the low freestream Mach number or the close
proximity of the outer boundary which extends about 10
body lengths ahead of and behind the airplane but only
about two body lengths above and below. Note that the
“tailing off” of the residual may also indicate that the high
frequency errors in the scheme have been effectively reduced
and that the low frequency errors are beginning to
dominate. The use of multigrid to rapidly eliminate these
low frequency errors may enhance the convergence.

7L2r’ o

FUN3D
Usm30

_B _Qé

5]

N QEGOQQDQ @a@

_00 @ @4 o
Co

P oo 0o 48 %% T ag

SRS o0 e 000%83
%
oS
6=
+
1.2l~|_|__;__'¥ L | L !
Q .25 .50 75 1.00
X/C

FIG. 30. Comparison of surface pressure distribution, M _ =0.2;
a=30°% =044,

A pressure distribution comparison at the n =0.44 span
station is made in Fig. 30 with the method of Ref. [1]. In
Fig. 30, the results referred to as FUN3D are those of the
present study while USM3D refers to those obtained using
the computer code of Rel [1] which is an upwind finite
volume code which uses multistage time stepping and {lux
difference splitting. As seen, the comparison between the
two codes are reasonably close with the main discrepencies
occurring at the leading edge. These differences are due to
slight differences in the computation of the boundary fluxes
and because the computations with USM3D use Roes’s
flux-difference-splitting [14] instead of flux-vector-splitting,

The current implementation of this code in three dimen-
sions requires about 185 words of memory per cell and the
computational rate on a CRAY YMP is approximately
60 us per cell per iteration, based on 15 subiterations per
global time step.

CONCLUDING REMARKS

A two-dimensional grid generation procedure has been
devised which combines automatic point placement with
Delaunay triangulation to efficiently produce good quality
unstructured meshes. The method uses a Delaunay tri-
angulation algorithm and 15 based on the work of Holmes
[13]. The present algorithm improves upon the previously
cited work by allowing for the automatic generation of new
mesh points so that clustering of points near surfaces is
achieved.

A flow solver is also developed in both two and three
dimensions which is both implicit and completely vec-
torizable. This scheme is based on backward-Euler time dif-
ferencing for which the linear problem arising at cach time
step is solved using several iterations of a Gauss-Seidel type
of procedure in which the unknowns arc divided into groups
so that no cells in a given group share an edge. In this
manner, all the cells in a group are independent of each
other so that their solutions can be obtained
simultaneously.

The effect on convergence rate (based on computer time)
of the number of subiterations is also examined. It is found
that between 15 and 20 subiterations per global time step
produce the best results. In addition, it is also shown that
the use of implicit boundary conditions improves the
convergence rate of the current algorithm.

Results are shown for two-dimensional flow over a
NACA 0012 airfoil and a two-element airfoil in which the
solution is obtained with adaptation. For the two-element
configuration, comparisons are made with the exact solu-
tion and it is shown that excellent results are obtained by
adaptation. For three dimensions, the calculation of
subsonic flow over a business jet 1s demonstrated.

38

H

o~ g m:uz.a‘o,'t: oh:,: -
o .

The author acknowledges Daryl Bonhaus for generating the grid around

=

APPENDIX: SYMBOLS
Matrix
Area of cell
Speed of sound

Conditions on body
Courant-Friedichs-Lewy number
Chord length

Diagonal components of A

Distance to nearest surface

Total energy per unit volume

Fluxes of mass, momentum, and energy
Fluxes normal to cell face

Split fluxes

Components of A below the diagonal
Mach number normal to cell face
Freestream Mach number

Components of A above the diagonal
Total number of cells

Unit normal

Number of edges meeting at a node

x and y components of a unit normal
All off-diagonal components of A
Pressure

Conserved state vector, Q =[p pu pv E]°
Primative state vector, q=[p u v P3T
Residual for a cell

Riemann invariants

Vector from center of a cell to center of an edge
Denotes reference condition

Entropy

Time

Velocity normal to cell face

Cartesian velocities in x and v directions
Cartesian coordinates

Angle of attack

Parameter used for grid clustering
Ratio of specific heats, taken as 1.4
Spanwise location on wing

Density

Standard deviation of ¢

Function used for grid clustering
Average value of ¢

Boundary of cell

Relaxation factor

ACKNOWLEDGMENT

the business jet.

W. KYLE ANDERSON
REFERENCES
1. N. T. Frink, P. Parikh, and S. Pirzadeh, AIAA 91-0102, Jan. 1991,
2. D} Mavriplis, AIAA 91-1549, June 1991,
3. F. Angrand and A. Dervieux, fat. J. Numer. Methods Fluids 4 (1984).
4. L. Fezoui and B. Stoufflet, J. Comput. Phys. 84, 174 (1989).
5.). Peraire, M. Vahdati, K. Morgan, and O. Zienkiewicz, J. Comput,

]

Phys. 72, 449 (1987).
. R. Lohner and P. Parikh, AIAA 88-0515, Jan. 1988,

7. P. Parikh, R. Lohner, C. Gumbert, and S. Pirzadeh, ATAA 89-0362,

Jan. 1989.
. . S, Spragle, W. R. McGrory, and J. Fang, AIAA 91-0726, Jan. 1991.
. A. Bowyer, Compuy. J. 24, No. 2 (1981).

10. T. J. Baker, AIAA 87-1124, June 1987.

1t
12,
13,

T. J. Barth and D. C. Jespersen, AIAA 89-0366, Jan. 1989,

J. C. Vassberg and K. B. Dailey, AIAA 90-2998-CP, 1990.

D. G. Holmes and D. D. Snyder, “The Generation of Unstructured
Triangular Meshes using Delaunay Triangulation,” in Numerical
Grid Generation in Computational Fluid Dynemics ‘88 (Pineridge,
Swansea, UK., 1988), p. 643,

14. P. Roe, J. Comput. Phys. 43, 357 (1981),

17,

18
19.

. 4. T. Batina, ALAA 90-1649, June 1990,

. R. D. Rausch, J. T. Batina, and H. T. Y. Yang, ATAA 91-1106, Apr.
1991

D. L. Whitaker, D. C. Slack, and R. W. Walters, ATAA 90-0697, Jan.
1990,

D. Mavriplis and A. Jameson, ICASE Report No. 87-53, 1987.

B. V. Leer, “Flux Vector Splitting for the Euler Equations,” Lecture
Notes in Physics, Vol. 170 (Springer-Verlag, New York/Berlin, 1982),
p. 501.

20. T.). Barth, AJAA 91-0721, Jan. 1991,

21
21.

23.
24,
25.

26.
27
28.
29,

F. W. Lewntowski, STAM J. Sci. Star. Compur. 1313), 765 (1992).

N. T. Frink, “Upwind Scheme for Solving the Euler Equations on
Unstructured Tetrahedral Meshes,” Workshop on Accuracy of
Unstructured Grid Techniques, NASA Langley Research Center, Jan.
16-17, 1990,

J. M. Janus, Master’s thesis, Mississippi State University, Aug. 1984,
V. Venkatakrishnan and T. J. Barth, ATAA 89-0364, Jan. 1989.

G. F. Carey and J. T. Oden, Finite Elements; Computational Aspects,
¥ol. 3 (Prentice-Hall, Englewood Cliffs, NJ, 1984},

J. T. Batina, ALIAA 90-0936, Apr. 1990,
W. Mulder, Ph.D. thesis, Delft University of Technology, June 1985.
B. R. Williams, Aeronautical Research Council, R & M 3717, 1973,

G, P. Warren, W. K, Anderson, J. L. Thomas, and S, L. Krist, AIAA
91-1592, June 1991,

30. Y. G. Kallinderis and J. R, Baron, A744 J. 27 (19€5).

31, P, Parikh, S. Pirzadeh, and R. Lohner, NASA CR-182090, 1990.

